Comparison of different strategies for using fossil calibrations to generate the time prior in Bayesian molecular clock dating
نویسندگان
چکیده
Fossil calibrations are the utmost source of information for resolving the distances between molecular sequences into estimates of absolute times and absolute rates in molecular clock dating analysis. The quality of calibrations is thus expected to have a major impact on divergence time estimates even if a huge amount of molecular data is available. In Bayesian molecular clock dating, fossil calibration information is incorporated in the analysis through the prior on divergence times (the time prior). Here, we evaluate three strategies for converting fossil calibrations (in the form of minimum- and maximum-age bounds) into the prior on times, which differ according to whether they borrow information from the maximum age of ancestral nodes and minimum age of descendent nodes to form constraints for any given node on the phylogeny. We study a simple example that is analytically tractable, and analyze two real datasets (one of 10 primate species and another of 48 seed plant species) using three Bayesian dating programs: MCMCTree, MrBayes and BEAST2. We examine how different calibration strategies, the birth-death process, and automatic truncation (to enforce the constraint that ancestral nodes are older than descendent nodes) interact to determine the time prior. In general, truncation has a great impact on calibrations so that the effective priors on the calibration node ages after the truncation can be very different from the user-specified calibration densities. The different strategies for generating the effective prior also had considerable impact, leading to very different marginal effective priors. Arbitrary parameters used to implement minimum-bound calibrations were found to have a strong impact upon the prior and posterior of the divergence times. Our results highlight the importance of inspecting the joint time prior used by the dating program before any Bayesian dating analysis.
منابع مشابه
Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution
Molecular sequence data provide information about relative times only, and fossil-based age constraints are the ultimate source of information about absolute times in molecular clock dating analyses. Thus, fossil calibrations are critical to molecular clock dating, but competing methods are difficult to evaluate empirically because the true evolutionary time scale is never known. Here, we combi...
متن کاملThe impact of the representation of fossil calibrations on Bayesian estimation of species divergence times.
Bayesian inference provides a powerful framework for integrating different sources of information (in particular, molecules and fossils) to derive estimates of species divergence times. Indeed, it is currently the only framework that can adequately account for uncertainties in fossil calibrations. We use 2 Bayesian Markov chain Monte Carlo programs, MULTIDIVTIME and MCMCTREE, to analyze 3 empir...
متن کاملExploring uncertainty in the calibration of the molecular clock.
Calibration is a critical step in every molecular clock analysis but it has been the least considered. Bayesian approaches to divergence time estimation make it possible to incorporate the uncertainty in the degree to which fossil evidence approximates the true time of divergence. We explored the impact of different approaches in expressing this relationship, using arthropod phylogeny as an exa...
متن کاملStrategies for Partitioning Clock Models in Phylogenomic Dating: Application to the Angiosperm Evolutionary Timescale
Evolutionary timescales can be inferred from molecular sequence data using a Bayesian phylogenetic approach. In these methods, the molecular clock is often calibrated using fossil data. The uncertainty in these fossil calibrations is important because it determines the limiting posterior distribution for divergence-time estimates as the sequence length tends to infinity. Here, we investigate ho...
متن کاملBayesian relaxed clock estimation of divergence times in foraminifera.
Accurate and precise estimation of divergence times during the Neo-Proterozoic is necessary to understand the speciation dynamic of early Eukaryotes. However such deep divergences are difficult to date, as the molecular clock is seriously violated. Recent improvements in Bayesian molecular dating techniques allow the relaxation of the molecular clock hypothesis as well as incorporation of multi...
متن کامل